
The specified function f(T) is characteristic of salt baths in which tools are heated for 
heat treatment. Figure 1 presents the calculated dependences of the temperature of the source 
ensuring the regularity of heating the surface T s = f(~) for specimens with radius 0.005, 
0.01, and 0.02 m. 

Figure 2 shows the calculated and the experimental dependences of the temperature of 
the source and of the surface for specimens with radius 0.005 m. 

The experimental installation for radiative heating of objects and the experimental 
method were presented by us in [3]. It can be seen from Fig. 2 that the experiment is in 
good agreement with the calculation. 

The obtained result is of great practical importance because controlled radiative heating 
can be instrumental in attaining specified regimes of heat treatment so that ecologically 
harmful heat sources can be replaced in production. 

NOTATION 

T = T(~, T) is temperature at the point with the radius vector r at the instant T; Tso and 
Ts) temperature of the source and of the surface, respectively; Cp) specific heat; p) density; 
%) thermal conductivity; ~) reduced degree of blackness; o 0) Stefan-Boltzmann constant. 
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NONSTEADY THERMOELASTIC DEFORMATION OF COOLED LASER MIRRORS 

N. I. Golovchenko, I. V. Milov, I. L. Strulya, 
and V. V. Kharitonov 

UDC 539.377:621.375.826 

The article investigates the temperature fields and distortions of the optical 
surface of laser mirrors of different materials subjected to different kinds of 

thermal loading. 

The designing, production, and testing of high-energy laser mirrors is very laborious 
and expensive. That is why various engineering-physical models are worked out for them, 
making it possible to determine theoretically distortions of the shape of the optical surface 
of reflectors in dependence on their geometric dimensions, properties of the materials, the 
structure of the cooling system, the flow rate of the heat carrier, the profile of the lumi- 
nous load, etc. [1-3]. Most fully developed are methods of calculating round mirrors sub- 
jected to axisymmetric beam load, based on the examination of steady temperature fields. 
It was shown in [3] that for solid disk mirrors cooled from the rear surface there exists 
an exact solution of the spatial axisymmetric problem of thermoelasticity. Nonsteady deforma- 
tion of uniformly illuminated reflectors was dealt with in [4] in the approximation of the 
theory of thermoelasticity of thin plates. 

In the present work we explain the method of calculating three-dimensional nonsteady 
distributions of temperature and of thermoelastic displacements in cooled mirrors that have 
the shape of parallelepipeds (Fig. i). The method takes into account the special traits 
of spatial distribution of the thermal load, the anisotropy of the thermal conductivities, 
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Fig. i. Calculation diagram of the cooled mirror: h i ) base, 
h2) cooled layer, h 3) reflecting layer. 

heating of the heat carrier while it flows through the cooling system. We present the non- 
trivial results of calculation of thermal displacements of the reflecting surface of rectangu- 
lar mirrors with channel (silt) cooling system. 

i. Method of Calculating Temperature Fields. The mirror in the form of a parallele- 
piped with sides A, B, and H is loaded in the plane z = H by a thermal flux with density 

q(x, y), W/m 2 forming in the reflecting layer a temperature gradient in accordance with Four- 
ier's law: q(x, y) = -%zST/az for z = H. The other outer surfaces (sides) are heat-insulated, 
i.e., the temperature gradients normal to these surfaces are equal to zero. The heat carrier 
is pumped through the cooling system in the direction of the y-axis at the rate G, kg/sec. 
The cause of deformation is the thermal expansion of the material. It is known [5] that 
here we may neglect the influence of deformation on the temperature field and solve the problem 
of heat conduction and of elasticity independently (i.e., within the framework of the uncon- 
nected theory of thermoelasticity). The equation of nonsteady heat conduction describing 
the temperature distribution in each layer was used in the approximation of an anisotropic 
porous medium [2]: 

OT OzT 02T O~T 
pc = )~x - -  + ~ - -  + )~ - -  -- ~ (7" - -  T~ ), ( i ) 

& Ox 2 Oyz Oz z 

where T (x, y, z, z) is the temperature of the mirror; T~ (x, y, z) is the temperature of 
the liquid (the heat carrier) in the cooling system. The term ~v(T - T~) takes into account 
the volumetric heat sinks in the homogenized cooled layer whose ribs (carcass) are cooled 
in accordance with the Newton-Richman law [2, 4, 6]. In the reflecting layer and in the 
base of the mirror, where there are no volumetric heat sinks, the volumetric heat transfer 
coefficient c~ = 0. On the interfaces between layers, like everywhere inside the mirror, the 
temperature and the heat flux density are continuous functions. The initial state of the 
mirror is usually isothermal at some temperature To, which is not mandatorily equal to the 
temperature of the liquid Ts at the inlet to the cooled layer~ 

This is briefly the mathematical statement of the thermal problem when the temperature 
distribution of the liquid Ts y, T) is known. Since T~ is not known beforehand, it can 
be determined from the point solution of the equation of heat conduction (i) and the equation 
of the material and thermal balance for the cooled layer 

OT~ 
- -  i % ( r -  r~:) de, ( 2 )  h9s ~v 09 h 

and at the inlet to the cooled layer (y = 0) we have T~(x, 0, T) = Ts To reduce the 
number of arithmetic operations in the calculation of the temperatures we used a semianalytica] 
method: the solution of the three-dimensional equation of heat conduction (i) was sought 
in the form of a double Fourier series: 

T(x, y, z, "0 To+ ~ T~z(z,'c) cos amx any = -- COS -- 
. . . .  o A B 

(3) 
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where Tmn(Z , T) are unknown functions. Substituting expression (3) into (i), we obtain the 
following equations, initial and boundary conditions for determining the functions Tmn: 

__ ( yi~zm 2 ~z~2 ) 
pc OTm,~O.~ -- ~z 02T~oz z ~ A------Z- + ~u B ~  + ~z v T,~,~ + ~z v T ~m,G (4) 

OT~ = M &  = q~,___~ . ~  , OToz ..... ~=0, = 0 ,  (5) T ~  (z, O) 0; 

where qmn and Ts n a re  the  c o e f f i c i e n t s  of  expansion of  the  f u n c t i o n s  q(x,  y) and Tt (x ,  y) 
into a double Fourier series in the form of (3). On the interface of the cooled layer with 
the reflecting plate and with the base, conditions of continuity of temperature and of heat 
flux were specified. 

Equations (4) are unidimensional parabolic nonsteady-state equations of heat conduction 
which are solved by the finite difference method with the use of the method of matching. 
The number of equations in (4) to be solved corresponds to the number of terms in expression 
(3). The summation limits of (3) depend on the degree of detailing of the function q(x, 
y), they are limited from above by the possibilities of the computer, and in our case they 
are equal to 20. To find the solutions of Eq. (4), we have to know the temperature of the 
heat carrier in the cooling system T&(x, y). This can be found most simply and economically 
by integrating the equation of material and thermal balance (2) after each step with respect 
to time, i.e., by taking into account the amount of heat obtained by the heat carrier from 
the carcass of the cooled layer at the preceding time step: 

Y av (T(x' y', *,)--T~ (x, g', *,)] 
Ts (x, y, Ti+~) = r ~ o +  j" dr'. (6) 

o 

Here, T(x, y, ~i) is the temperature of the carcass (ribs) of the cooled layer averaged over 
the z-coordinate; i is the number of the time step; y' is the integration variable (0 s 
y' ~ y). 

The thermophysical parameters of the homogenized cooled layer (~V, %x, %y, %z ) were de- 
termined by a method from [2, 6] coordinated with various experimental data. For instance, 
for a layer with slit (channel) structure, like in Fig. i, we have approximately %& = 0; 
%y = %z = %(1 - ~), where % is the thermal conductivity of the material of the ribs; H = 
aT(a + b) is the porosity of the cooling system; a is the thickness of the channel; b is 
the thickness of the rib. The volumetric heat transfer coefficient is correlated with the 
heat transfer coefficient on the surface of the ribs ~, W/(m2.K), calculated by the tradition= 
al formulas for flat channels (with rectangular cross section), by the approximate expression 
~V = ~2(h + a)/h( a + b) = (~/h)2~(l + h/a). Stricter and more complex methods are presented 
in [6] and in the Appendix of the present article. 

2. Method of Calculating Thermal Displacements. In the solution of the problem of 
thermoelasticity the boundary conditions were provided by the assumption that the normal 
stress components on all the outer surfaces of the mirror are equal to zero, which corresponds 
to the frequently encountered case when the fastening is much less rigid than the reflector 
itself. To find the displacement fields in the present work, we use the finite element method 
based on the minimization of the potential strain energy which was described in detail in 
the monographs [7, 8]. The finite elements had the shape of a tetrahedron with four nodal 
points. The temperature at the nodal points at different isntants was calculated before- 
hand by the method explained above. 

The sought components of the displacement vector were approximated by linear functions 
within the limits of each finite element. The finite elements were grouped into elementary 
parallelepipeds of five elements each. The network for calculating the displacements, formed 
by the nodes of the finite elements, had the following parameters: 21 points on the x- and 
y-axes, 7 points on the z-axis. In solving the system of linear algebraic equations obtained 
in the process of realization of the finite element method we gave preference to the iteration 
method of successive superrelaxations because it requires much less capacity of the internal 
computer memory. To reduce the number of iterations, we found beforehand the approximate 
displacements using the relations of the theory of thermoelasticity of thin plates. Good 
convergence of the iteration process was attained after 200-400 iterations with the parameter 
of superrelaxation equal to 1.7. The displacements were measured from a plane determined 
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Fig. 2. Spatial distribution of the radiation flux density 
onto the reflecting surface of the mirror. 

Fig. 3. The z-component of displacements of the reflecting 
surface of the mirror (~m) of molybdenum for ~ = i00 W/cm2; 

= b = 1 mm; wV = 4.107 W/(ma-K). For the profile of the 
thermal load see Fig. 2. W, Dm. 

by three points of the rear surface of the mirror. The disposition of these points was chos- 
en such that it corresponded to the disposition of the real fastenings of the reflector. 

The approaches described above were realized in the form of programs in FORTRAN ensur- 
ing dialogue regime of operation and display of the results of the calculations in graphic 
form. The computer code of the program requires about 600 Kbytes of internal memory, and 
another approximately 400 Kbytes are needed for storing the variables. The correctness of 
the algorithms and of the programs was verified by comparison with the analytical solutions 
of the equations of heat conduction and of thermoelasticity in the case of unidimensional 
temperature distributions. The comparisons showed that the temperature fields coincide almost 
completely, and the displacement fields showed good agreement with an accuracy of 5%. 

3. Influence of the Nonuniformity of Luminous Loading and Unsteadiness of the Tem- 
perature Fields on the Deformation of the Mirror. Below we present some results of calcu- 
lations of a mirror operating under conditions that are typical of a shaping optical system 
of a gas-dynamical or electric-discharge CO2-1aser with unstable confocal resonator and rec- 
tangular mirrors. A typical distribution of power density of the radiation on the reflecting 
surface of the mirror is presented in Fig. 2. Calculations show that the profile of the tempera- 
ture distribution of the reflecting surface almost coincides with the load profile; this 
makes it possible in principle to find the distribution of the thermal load by measuring 
the temperature of the working surface of the cooled reflector. Figure 3 presents the z- 
component of displacements of the optical surface of the reflector. It can be seen that 
the total flexure of the mirror as well as expansion of the subsurface layers contribute 
to distortion, and the two contributions are commensurable with each other. The amplitude 
of displacements has its maximum with Fo ~ 0.i (Fig. 4), then it decreases somewhat on ac- 
count of more uniform heating of the base of the mirror when the loading time is longer. 
This result is in satisfactory agreement with the analytical evaluations in [4] where the 
value Fo ~ 0.i, at which the deformations are maximal, was determined for the first time. 
It can be seen that the maximal amplitude of distortions is 40-50% greater than the distor- 
tions with steady temperature fields. Nonuniform thermal loading causes much greater dis- 
placements than uniform loading with the same integral power. The difference may attain 
a factor of 2-4 at different instants for the mirrors dealt with by us. 

Figure 5 shows the responses of the shape of the reflecting surface to different pro- 
files of thermal loading for mirrors with a cooling system concentrated near the working 
surface, and for mirrors cooled from the rear side. The results are presented for steady- 
state temperature distributions. The special features of the loading profile manifest 
themselves more on the shape of the surface with the first alternative of cooling (with 
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Fig. 4. Dependence of the amplitude of 
distortions of the optical surface (~m) 
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Fig. 5. Influence of the profile of thermal loading (with 
equal full power) and of the disposition of the cooling sys- 
tem on the profile of the reflecting surface of mirrors: a) 
uniform heating; b) heating of the central zone; c) annular 
heating. Solid lines below) displacements (Dm) for mirrors 
with a cooling system near the reflecting surface (the scale 
on the left); dashed lines) displacements (pm) for mirrors 
cooled from the rear side (the scale on the right). 

considerably lower level of displacements). When the center of the mirror is shaded (Fig. 
5c) and cooling is effected from the rear side, there is no negative deflection of the 
central part of the reflecting surface; this is in full agreement with the exact solution 
of [3]. With cooling near the working surface such deflection occurs. Another trait is 
the noticeable "piling up" of the loaded edges of the mirror (see Fig. 5a, b). 

4. Influence of the Choice of the Material of Structures and of the Flow Rate of 
Heat Carrier on the Thermal Deformation of Mirrors. When load-bearing mirrors are devised, 
the choice of material is particularly important. When the thermal load is moderate (less 
than 200-300 W/cm2), the main criterion of serviceability of reflectors is their geometric 
stability. For a cooled mirror loaded by a heat flux with distribution (according to Fig. 
2) with maximal density 25 W/cm 2 we calculated alternatives of materials that are traditional 
for load-bearing optical components: copper, beryllium, molybdenum, silicon, and Invar. The 
results of the calculation are presented in Table i. When we compare the distortions with 
the properties of the listed materials, we come to the conclusion that the ratio B/% of the 
temperature coefficient of linear expansion to the thermal conductivity, which is used for 
evaluating the suitability of the material of reflectors operating in a continuous regime, 
is ineffective where cooled mirrors are concerned. For instance, copper and molybdenum mir- 
rors, which have similar values of B/% and equal overall dimensions and structure of the 
cooled layer, differ almost three times from each other in the amplitude of displacements. 
The magnitude of ~ affects the geometric stability of cooled relflectors much more than 
thermal conductivity does; for mirrors of traditional design (thin reflecting plate and cooled 
layer, thick base) the displacements of the reflecting surface are approxiamtely proportional 
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TABLE i. Maximal Displacements of the 
Reflecting Surface of Mirrors from Dif- 

ferent Materials for q = 25 W/cm 2 

Material of mirror [Maximal displacement, bm 

Copper 1 1,6 Beryllium 1,2 
Molybdenum 0>55 
Silicon 0,30 
Invar 0,15 
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Fig. 6. Dependence of the maximal displace- 
ments (~m) and of the heat transfer coef- 
ficient (kW/(m2.K)) in the channels of the 
cooling system on the specific flow rate of 
heat carrier (kg/(m2.sec)): i) measured 
displacements with qmax = 135 W/cm2; 2) with 
qmax = 270 W/cm2; solid lines) numerical 
calculation of displacements; dashed line) 
calculation of heat transfer. 

to $/~0,3 (this magnitude does not have any concrete physical meaning, it is the result of 
generalization of numerical experiments). The weak influence of thermal conductivity is 
due to the fact that when the thermal conductivity of the material is lower, increased dis- 
placements due to stronger heating of the reflecting plate is largely compensated by reduced 
leakage of heat to the base and its correspondingly reduced deformation. In accordance with 
the above-said, mirrors of silicon and Invar have the best geometric stability. It should 
be noted that the comparatively low thermal conductivity of Invar is the cause of higher 
temperatures (by 30~ of the working surface, which in this case, however, is still accept- 
able. 

Another important aspect in the designing of mirrors and entire laser systems is the 
dependence of thermal displacements on the flow rate of the heat carrier in the cooling 
system (see Fig. 6). The figure also presents the values of the experimentally measured 
displacements in experiments with electron-beam heating of mirrors. The cooling system of 
the molybdenum mirror consists of straight rectangular channels (see Fig. i) 0.6 mm wide, 
2.5 mm deep, and with a pitch of 1.4 mmo The nature of the presented dependences shows that 
from some values onward, a further increase of the flow rate of the heat carrier (or heat 
exchange intensified by other methods) has little effect. 

Conclusion. In the briefly described method of calculating the three-dimensional nonsteady 
distributions of temperatures and of thermoelastic displacements in cooled mirrors with the 
shape of parallelepipeds, a number of procedures substantially reducing computer time was 
used: 

homogenization of the heterogeneous structure of some layers (e.g., the cooled layer); 

combined analytical and numerical methods of calculating the temperature (application 
of a double Fourier series with respect to the x-, y-coordinates); 

calculation of the distribution of the temperature of a liquid on the basis of the balance 
relations for the preceding time step; 

application of the iteration method of superre!axation for solving systems of algebraic 
equations arising in the realization of the finite element method in the problem of thermo- 
elasticity. 

The actual results obtained by this method and presented in Figs. 3-6 show that reliable 
calculation of thermal displacements of the reflecting surface of laser mirrors requires 
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that factors such as nonuniformity of the beam loading, nonsteadiness of thermal processes, 
the structure of the cooled layer, the flow rate of the heat carrier, and the composition 
of the structural materials be sensitively taken into account. 

The program of numerical calculation of mirrors worked out with a view to these factors 
makes it possible to optimize the geometric dimensions of the cooling system and the flow 
rate of heat carrier for each possible structural material and for various profiles of beam 
loading. This program is also suitable for the analysis of test results of mirrors. 

Appendix. Method of Determining the Thermophysical Parameters of the Homogenized 
Layer. 

In the directions x, y the thermal conductivities are equal to X x = 0, Xy = X(I-H). 
Thermal conductivity X z and volumetric heat transfer eV can be determined from the comparison 
of the analytically and numerically determined temperature of the ribs for the case of steady- 
state heating of a mirror by a uniform heat flux. According to [2, 6] the analytical solu- 
tion of the unidimensional (along the z-axis) equation of heat conduction (I) for a homogen- 
ized layer with volumetric heat sinks under uniform thermal loading has the form 

ch (z'/8) 
T(z, y ) = T s  ( y ) + q  , (AI) 

% sh (h/8) 

where 5 = ~Xz/~V, ~c = ~Xz~V = Xz/5 are dimensional parameters (m; W/(m2.K)) depending on 

the sought Xz and eV (their physical meaning was explained in detail in [2]); z' = 
z - (H - h - h a) is the coordinate measured from the lower base of the rib (see Fig. i); 
T~(y) = T~0 + qy/p~c~ vh is the temperature of the liquid which rises linearly with the dis- 
tance y from the inlet. 

From (AI) we find the temperature of the lower (~o) and upper (u) base of the ribs (i.e., 
the mean temperatures of the lower and upper sides of the cooled layer at the given distance 
y from the inlet): 

! I 
�9 T~ ~-q (A2) 

~ o =  T~ + q ~ c sh (h/6i- , T ,,== ~ cth (hi6) 

These same temperatures can be determined by numerically solving the two-dimensional 
equation of heat conduction for a single cell of the mirror with a rib when the heat transfer 
coefficient ~ on its lateral surface and on the walls between the ribs under the same thermal 
load is known. Substituting the numerically determined temperatures T~o and T u into formu- 
la (A2), we obtain two equations with the two unknowns ~c, 5 or ~V, Xz" The values of ~V 
and X z thus calculated are best able to match the analytical and numerical calculations of the 
temperatures on the boundaries of the cooled layers under uniform thermal loading. These 
values of ~V and X z are used in subsequent calculations of the temperature of a mirror with 
the same structure of the cooled layer under nonsteady conditions with an arbitrary profile 

of thermal loading. 

A comparison of the values of ~V and X z determined by the explained method and by the 
simplified formulas presented in the article shows that both methods yield similar results 
when the value of ~ is specified. 

NOTATION: 

x, y, z) spatial coordinates; ~) time; q) heat flux density, W/m2; G) mass flow rate 
of the heat carrier, kg/sec; T) temperature; %x, Xy, Xz) thermal conductivities of the 
material of the mirror in the directions x, y, z, respectively, W/(m.K); p, c, 6, < = X/pc) 
density (kg/ma), heat capacity (J/kg'K), temperature coefficient of linear expansion (I/K), 
and thermal diffusivity (m2/sec) of the material of the mirror, respectively; ~V) volumetric 
heat transfer coefficient, W/(ma-K); v) filtering rate of the heat carrier, m/sec; Fo = 
K~/H 2) Fourier number. 
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OPTIMAL CONTROL OF INGOT HEATING IN FLOW-THROUGH FURNACES 

V. B. Kovalevskii, F. M. Babushkin, and O. Yu. Sedyako UDC 621.1.018 

The algorithm developed here allows the ingot-heating conditions in a furnace 
corxesponding to the least skin formation to be determined. The influence of 
the furnace atmosphere on skin growth in heating is investigated. 

Economic efficiency- in particular, the choice of optimal technological conditions 
with respect to specified criteria - is one of the most important questions in studying heat- 
ing-furnace operation. In considering the optimal control of ingot heating, effective algo- 
rithms have been developed for linear problems [i]. For nonlinear problems, it is difficult 
to obtain a control algorithm. However, the introduction of nonlinear components in the 
mathematical description of the process permits the construction of a more adequate mathe- 
matical model. Consider the nonlinear problem of skin minimization for bodies with a small 
internal resistance 

dT 
- -  k' (~  (Tr (t) - -  T (t)) + a (T~ (t) - -  T~ (0)) ,  ( 1 ) 

dt 

T ( O ) = T o ,  T ( ~ = T f  (2 

tf  
i' ~ exp [--~IT (t)] dt --+ rain. ( 3 O' I (t) Tc(t) 

The optimal-control problem consists of the choice of conditions of temperature variation 
of the medium over time such as to ensure ingot heating from a specified initial temperature 
T o to a specified final temperature Tf, with minimum skin formation at time tf. The control 
function Tc(t) satisfies the constraint T o < A I ~ Tc(t) ~ Tf ~ A 2 for any 0 ~ t ~ tf and is 
a piecewise-continuous function of t with a finite number of points of discontinuity. 

Using the mathematical apparatus of [i, 2], the optimal heating trajectory of the metal, 
the optimal control, and the switching time of the controlling action (temperature of the 
heating medium) are obtained. The procedure for elucidating the structure of the controlling 
function, the optimal trajectory, and the algorithm for solving Eqs. (1)-(3) may be found 
in the Appendix. 

After finding the switching time ti, the optimal control is written in the form 

{&, O~t<t~, 
To(t)= A~, t~ t~ t f .  

Thus, a two-stage heating graph of fine-grade ingots is obtained, as well as an algo- 
rithm for determining the switching time. 
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